\(\int \tan (c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx\) [69]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 34, antiderivative size = 105 \[ \int \tan (c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {\sqrt {2} \sqrt {a} (A-i B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}+\frac {2 A \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 i B (a+i a \tan (c+d x))^{3/2}}{3 a d} \]

[Out]

-(A-I*B)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*2^(1/2)*a^(1/2)/d+2*A*(a+I*a*tan(d*x+c))^(1/2)/
d-2/3*I*B*(a+I*a*tan(d*x+c))^(3/2)/a/d

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {3673, 3608, 3561, 212} \[ \int \tan (c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {\sqrt {2} \sqrt {a} (A-i B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}+\frac {2 A \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 i B (a+i a \tan (c+d x))^{3/2}}{3 a d} \]

[In]

Int[Tan[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

-((Sqrt[2]*Sqrt[a]*(A - I*B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/d) + (2*A*Sqrt[a + I*a*Tan
[c + d*x]])/d - (((2*I)/3)*B*(a + I*a*Tan[c + d*x])^(3/2))/(a*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3561

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 3608

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*(
(a + b*Tan[e + f*x])^m/(f*m)), x] + Dist[(b*c + a*d)/b, Int[(a + b*Tan[e + f*x])^m, x], x] /; FreeQ[{a, b, c,
d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] &&  !LtQ[m, 0]

Rule 3673

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 i B (a+i a \tan (c+d x))^{3/2}}{3 a d}+\int \sqrt {a+i a \tan (c+d x)} (-B+A \tan (c+d x)) \, dx \\ & = \frac {2 A \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 i B (a+i a \tan (c+d x))^{3/2}}{3 a d}-(i A+B) \int \sqrt {a+i a \tan (c+d x)} \, dx \\ & = \frac {2 A \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 i B (a+i a \tan (c+d x))^{3/2}}{3 a d}-\frac {(2 a (A-i B)) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{d} \\ & = -\frac {\sqrt {2} \sqrt {a} (A-i B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}+\frac {2 A \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 i B (a+i a \tan (c+d x))^{3/2}}{3 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.70 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.88 \[ \int \tan (c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {-3 \sqrt {2} \sqrt {a} (A-i B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )+2 \sqrt {a+i a \tan (c+d x)} (3 A-i B+B \tan (c+d x))}{3 d} \]

[In]

Integrate[Tan[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

(-3*Sqrt[2]*Sqrt[a]*(A - I*B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])] + 2*Sqrt[a + I*a*Tan[c + d
*x]]*(3*A - I*B + B*Tan[c + d*x]))/(3*d)

Maple [A] (verified)

Time = 0.13 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.78

method result size
derivativedivides \(\frac {-\frac {2 i B \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}{3}+2 a A \sqrt {a +i a \tan \left (d x +c \right )}-a^{\frac {3}{2}} \left (-i B +A \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{a d}\) \(82\)
default \(\frac {-\frac {2 i B \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}{3}+2 a A \sqrt {a +i a \tan \left (d x +c \right )}-a^{\frac {3}{2}} \left (-i B +A \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{a d}\) \(82\)
parts \(\frac {A \left (2 \sqrt {a +i a \tan \left (d x +c \right )}-\sqrt {a}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )\right )}{d}+\frac {2 i B \left (-\frac {\left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}{3}+\frac {a^{\frac {3}{2}} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{2}\right )}{d a}\) \(113\)

[In]

int((a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)*(A+B*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

2/d/a*(-1/3*I*B*(a+I*a*tan(d*x+c))^(3/2)+a*A*(a+I*a*tan(d*x+c))^(1/2)-1/2*a^(3/2)*(A-I*B)*2^(1/2)*arctanh(1/2*
(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2)))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 332 vs. \(2 (80) = 160\).

Time = 0.26 (sec) , antiderivative size = 332, normalized size of antiderivative = 3.16 \[ \int \tan (c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {3 \, \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {{\left (A^{2} - 2 i \, A B - B^{2}\right )} a}{d^{2}}} \log \left (-\frac {4 \, {\left ({\left (-i \, A - B\right )} a e^{\left (i \, d x + i \, c\right )} - {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {\frac {{\left (A^{2} - 2 i \, A B - B^{2}\right )} a}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - 3 \, \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {{\left (A^{2} - 2 i \, A B - B^{2}\right )} a}{d^{2}}} \log \left (-\frac {4 \, {\left ({\left (-i \, A - B\right )} a e^{\left (i \, d x + i \, c\right )} - {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {\frac {{\left (A^{2} - 2 i \, A B - B^{2}\right )} a}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - 4 \, \sqrt {2} {\left ({\left (3 \, A - 2 i \, B\right )} e^{\left (3 i \, d x + 3 i \, c\right )} + 3 \, A e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{6 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/6*(3*sqrt(2)*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt((A^2 - 2*I*A*B - B^2)*a/d^2)*log(-4*((-I*A - B)*a*e^(I*d*x +
I*c) - (I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt((A^2 - 2*I*A*B - B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^
(-I*d*x - I*c)/(I*A + B)) - 3*sqrt(2)*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt((A^2 - 2*I*A*B - B^2)*a/d^2)*log(-4*((-
I*A - B)*a*e^(I*d*x + I*c) - (-I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt((A^2 - 2*I*A*B - B^2)*a/d^2)*sqrt(a/(e^(2*I
*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/(I*A + B)) - 4*sqrt(2)*((3*A - 2*I*B)*e^(3*I*d*x + 3*I*c) + 3*A*e^(I*d*x
 + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))/(d*e^(2*I*d*x + 2*I*c) + d)

Sympy [F]

\[ \int \tan (c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \left (A + B \tan {\left (c + d x \right )}\right ) \tan {\left (c + d x \right )}\, dx \]

[In]

integrate((a+I*a*tan(d*x+c))**(1/2)*tan(d*x+c)*(A+B*tan(d*x+c)),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))*(A + B*tan(c + d*x))*tan(c + d*x), x)

Maxima [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.02 \[ \int \tan (c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {3 \, \sqrt {2} {\left (A - i \, B\right )} a^{\frac {5}{2}} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) - 4 i \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} B a + 12 \, \sqrt {i \, a \tan \left (d x + c\right ) + a} A a^{2}}{6 \, a^{2} d} \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/6*(3*sqrt(2)*(A - I*B)*a^(5/2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(I
*a*tan(d*x + c) + a))) - 4*I*(I*a*tan(d*x + c) + a)^(3/2)*B*a + 12*sqrt(I*a*tan(d*x + c) + a)*A*a^2)/(a^2*d)

Giac [F]

\[ \int \tan (c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a} \tan \left (d x + c\right ) \,d x } \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)*tan(d*x + c), x)

Mupad [B] (verification not implemented)

Time = 8.00 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.14 \[ \int \tan (c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {2\,A\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{d}-\frac {B\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}\,2{}\mathrm {i}}{3\,a\,d}+\frac {\sqrt {2}\,B\,\sqrt {-a}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-a}}\right )\,1{}\mathrm {i}}{d}-\frac {\sqrt {2}\,A\,\sqrt {a}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {a}}\right )}{d} \]

[In]

int(tan(c + d*x)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

(2*A*(a + a*tan(c + d*x)*1i)^(1/2))/d - (B*(a + a*tan(c + d*x)*1i)^(3/2)*2i)/(3*a*d) + (2^(1/2)*B*(-a)^(1/2)*a
tan((2^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*(-a)^(1/2)))*1i)/d - (2^(1/2)*A*a^(1/2)*atanh((2^(1/2)*(a + a*t
an(c + d*x)*1i)^(1/2))/(2*a^(1/2))))/d